v S Ma I S Product Quick Review

ICT for society Smals Research

www.smals.be www.smalsresearch.be

Neosemantics (n10s) 5.20.0

Plugin Neo4J pour la compatibilité avec
0@ n 1 OS les outils sémantiques de RDF

«3

d neosemantics | Systeme: Multiplateforme
Développé par : Neo4J Labs
|Open source, mc_:ompatlble av.ec Personne de contact : pierre.leleux@smals.be
certaines versions de Neo4j
Fonctionnalités

Neosemantics (souvent abrégé en n10s) est un plugin pour Neo4J ayant pour objectif de rendre ce dernier
compatible avec les outils sémantiques offerts par les graphes de connaissances en RDF (Resource
Description Framework).

RDF, initialement congu comme un framework pour des opérations d’échange de données, met un fort
accent sur linteropérabilité, mais dispose aussi d’'une grande richesse sémantique (ontologies en
RDFS/OWL, raisonneurs OWL pour I'inférence automatique d’informations implicites, validation du contenu
des graphes de connaissances via SHACL). Neo4J, étant congu en tant que base de données orientée
graphe basée sur une structure de type LPG (Labeled Property Graph), propose une solution plus simple
a mettre en place et offre des performances de requétage optimisées, mais au prix de la perte de la richesse
sémantique offerte par RDF. L’'objectif du plugin Neosemantics est donc de donner accés aux outils
sémantiques de RDF directement en Neo4J.

Ce plugin permet entre autres :
e D’importer des données encodées en format RDF (triplets RDF) vers une base de données Neo4J.
e D’importer des ontologies RDF.
o De créer des régles d’'inférence automatique en Neo4d a partir de fichiers (ou de lignes de code)
en RDFS/OWL.
e De valider le contenu du graphe de connaissances sur base de contraintes exprimées en SHACL.

En tant que plugin, I'utilisation de cet outil se fait directement en passant par Neo4dJ, via l'utilisation de
requétes en Cypher. Les outils d'inférence automatique et de validation peuvent au choix étre exécutés
d’'un coup sur l'intégralité du graphe, ou de fagon transactionnelle pour ne travailler que sur les données
ajoutées durant une transaction.

Conclusions & recommandations

Neosemantics permet de pallier plusieurs limites liées a l'utilisations de Neo4J en tant qu’outil pour gérer
un graphe de connaissances. En contrepartie, apprendre a utiliser ce plugin est relativement compliqué,
car il requiert non seulement des connaissances en Neo4J (et en Cypher), mais aussi une maitrise
suffisante des langages RDF, RDFS, OWL et SHACL que pouvoir y écrire 'ontologie, les régles d’inférence
et/ou les contraintes de validation, afin de pouvoir les importer ensuite vers Neo4J. Dans la pratique, ce
plugin est relativement niche : sauf si 'on dispose déja de fichiers contenant I'ontologie en RDF et/ou des
contraintes en SHACL que 'on souhaite utiliser directement en Neo4J, ce plugin n’apporte pas une grande
valeur ajoutée par rapport a I'écriture de requétes Cypher pour réaliser la validation/inférence.

QR: n10s 1/2 04/12/2025
[L

http://www.smalsresearch.be/
http://www.smals.be/
https://neo4j.com/labs/neosemantics/

Q Sma IS Product Quick Review

ICT for society Smals Research

Tests et résultats

Nous avons testé Neosemantics sur une machine virtuelle sous Linux, en utilisant la distribution debian-
based de Neo4J.

Le plugin est relativement facile a activer, il suffit de télécharger le plugin (.jar) depuis sa page github, de
le placer dans le folder plugins/ de Neo4d, puis de I'activer via le fichier config de Neo4J (neo45 . conf)
et de redémarrer Neo4J (si nécessaire).

Une fois le plugin installé, les procédures de n10s peuvent s’appeler simplement depuis Neo4J en Cypher
via les commandes [call nl10s]. En guise d’exemple, importer des contraintes de validation SHACL
vers Neo4J peut se faire, au choix, via la commande :

call nlOs.validation.shacl.import.inline ('my SHACL constraints') pour importer des
contraintes SHACL directement sous forme de lignes de code, ou alors via

call nl0s.validation.shacl.import.fetch(my SHACL file) pour importer les contraintes

contenues dans un fichier.

Les contraintes sont ensuite sauvegardées sous la forme de Hode properties © '
méta-nceuds de maniére a étre interrogeables via des requétes

(voir image a droite : méta-nceud contenant des contraintes <elomentld 4:bbbsfda38286.420F
SHACL importées via n10s). Lorsqu’un appel est fait a n10s :_d> :6f7"94995°68637=9 .
pour réaliser une validation, cette derniere sera traduite en ,:u..snaim fobject Object o
requétes Cypher sur base de l'information (patterns a détecter List

pour validation) contenue dans les méta-nceuds. f: :"me“ Object] E
Par conséquent, puisque qu’une validation est obtenue via une _nsq [object Object] ’-'i
série de requétes sur un ensemble de patterns, effectuer une e [Oge; 229(3 .
validation sur le graphe entier peut étre est une opération lourde _

pouvant durer plusieurs minutes, voir heures, suivant la taille du graphe (par exemple des graphes
contenant plusieurs de millions de nceuds) et le nombre de patterns a identifier (nombre de contraintes a
valider). De facon alternative, comme discuté précédemment, ces régles de validation peuvent aussi étre
exécutées de maniére transactionnelle, en les associant a un trigger APOC (un autre plugin Neo4J) afin
que les contraintes de validation ne soient exécutées que lorsque du nouveau contenu est ajouté. Auquel
cas, il est possible de faire en sorte que la validation ne soit exécutée que sur les données ajoutées durant
la transaction, pour rendre le processus automatique et performant.

Bien que ce genre de validation puisse en pratique étre remplacée par une série de requétes Cypher écrites
manuellement, on appréciera le fait de pouvoir facilement valider 'ensemble de contraintes d’'un coup et
d’obtenir un rapport récapitulatif qui liste les nceuds problématiques et la/les contrainte(s) qu’ils violent.

Concernant l'inférence automatique (rendre explicite des informations implicites) réalisée via n10s, celle-ci
peut aussi étre réalisée de plusieurs maniéres :

o Faire de l'inférence, soit globale, soit transactionnelle, afin d’ajouter I'information de fagon explicite
dans le graphe, grace a [l'utilisation de méta-nceuds et méta-relations pour stocker les régles
d’'inférence. L'idée est intéressante mais, en pratique, de simples requétes Cypher pourraient étre
utilisées pour ce genre d’opérations, sans nécessiter 'ajout de méta-données dans le graphe.

o Faire de l'inférence a la volée (on the fly) de sorte que l'information implicite soit accessible via
requétes, mais sans que celle-ci ne soit pour autant explicitement ajoutée dans le graphe. Ce type
d’'inférence peut notamment étre utile si les régles d’inférence sont dynamiques et changent
fréquemment, et que, par conséquent, on ne souhaite pas que les résultats de I'inférence ne soient
« matérialisés » dans le graphe. Conceptuellement intéressant, mais trés niche dans la pratique.
Difficile d’en trouver des applications concrétes.

Conditions d’utilisation & budget

Le package Neosemantics est gratuit, open source, téléchargeable depuis github, mais incompatible avec
certaines versions de Neo4d.

QR: n10s 2/2 04/12/2025
[L

https://github.com/neo4j-labs/neosemantics/releases

