Q S m a I S Product Quick Review

ICT for society Smals Research

www.smals.be www.smalsresearch.be

Circom

e Programmeerbare zero-knowledge bewijzen
= CIrcom |l o e

Systeemvereisten: Linux
https://iden3.io/circom
https://github.com/iden3/circom | Ontwikkeld door: Iden3
Open source / GPL-3.0 license | Contactpersoon: Kristof.Verslype@Smals.be

Functionaliteiten

Zero-knowledge bewijzen (ZKPs) stellen in staat kennis te bewijzen zonder die kennis prijs te geven. De
bewijzende partij creeéert daartoe een bewijs dat door een verfierende partij gevalideerd wordt. Een
populaire use case is bewijzen dat je ouder bent dan 18 zonder je exacte geboordedatum prijs te geven.

De vandaag meest populaire technologie - vooral in de context van blockchain — zijn zk-SNARKSs (Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge), wat toelaat compacte bewijzen te
genereren die efficiént te valideren zijn.

Circom is een raamwerk voor programmeerbare ZKPs. Het omvat een domeinspecifieke programmeertaal,
compiler en tools om bewijzen te creéren en te valideren. Circom wordt voornamelijk gebruikt op blockchian
netwerken. Het wordt onder meer gebruikt door privado.id, wat een infrastructuur op Ethereum aanbiedt
om selectief persoonsgegevens over jezelf prijs te geven. Andere projecten die op Circom beroep doen
zijn Tornado Cash — om op Ethereum de herkomst van je virtuele munten te verbergen —, en Semaphore
— een anoniem protocol voor verkiezingen en klokkenluiders.

Circom is een programmeertaal voor zk-SNARKSs. Dit type ZKPs hebben het nadeel dat ze een vertrouwde
setup vereisen en niet resistent zijn tegen cryptrografisch relevante kwantumcomputers. De recentere,
voorlopig nog minder populare zk-STARKs (zero-knowledge Scalable Transparent Argument of
Knowledge) hebben deze nadelen niet, zijn schaalbaarder maar resulteren in grotere bewijzen. Voor zk-
STARKSs worden andere domeinspecifieke programmeertalen zoals Cairo gebruikt.

Conclusies & Aanbevelingen

De installatie, net zoals het creéren en valideren van eenvoudige ZKPs ging vrij vlot, dankzij de tutorial.
Om effectief systemen te bouwen die het niveau van de experimenten overstijgt is echter heel wat kennis
vereist.

Circom 1/2 03/12/2025
]

http://www.smalsresearch.be/
http://www.smals.be/
https://iden3.io/circom
https://github.com/iden3/circom
https://www.privado.id/
https://tornado.cash/
https://github.com/semaphore-protocol/semaphore
https://en.wikipedia.org/wiki/Non-interactive_zero-knowledge_proof
https://www.cairo-lang.org/
https://docs.circom.io/getting-started

\“, Smals

) Product Quick Review
ICT for society

Smals Research

Testen & Resultaten

We hebben drie testen uitgevoerd m.b.v. Circom.

1) Gegeven een getal ¢, bewijzen we dat we twee pragma circom 2.0.0;

priemfactoren a en b kennen, zodat a x b = ¢. Men
veronderstelt dat een dergelijke factorisatie voor grote
priemfactoren onhaalbaar is m.b.v. klassieke / .
computers. Men maakt heel vaak gebruikt van deze | ° igﬁgi igﬁt ;
aanname in moderne cryptografie. : signal output c;

2) Gegeven een waarde h van 32 bytes, bewijzen we dat | °)
we een waarde v kennen, zodat h & f(v), waarbij f de :_ é/<22n:tfaé?ts'
cryptografische hashfunctie SHA-256 is. Het |12 |1
berekenen van de inverse van f is in de praktljk Figuur 1. Circom circuit om te bewijzen dat je
onhaalbaar, indien v voldoende entropie bevat en dus gegeven c,waardes a en b kent zodatax b = ¢
niet via brute-force te achterhalen is.

3) Gegeven een leeftijd, bewijzen we dat we meerderjarig zijn. Bewijzen van meerderjarigheid is een
typische use case voor ZKPs in de context van identiteitsbeheer.

template Multiplier2 () {

// Declaration of signals.

LI T S TR I o I

De bovenstaande code — men noemt ze doorgaans circuits — worden bij compilatie omgezet naar een
reeks wiskundige vergelijkingen. Als onderliggend zk-SNARK protocol werd met Groth16 gewerkt. Op
basis van die wiskundige vergelijkingen creéert Groth16 dus een bewijs dat eveneens met Groth16
geverifieerd kan worden.

Figuur 1 toont ons eerste circom circuit. Enerzijds zijn er de signals (private invoer en te bewijzen uitvoer)
en anderzijds zijn er de constraints; de relaties tussen deze signals die altijd geldig moeten zijn.

Voor testen 2 en 3 werd beroep gedaan op voorgedefinieerde circuits; bouwblokken die beschikbaar zijn
in circomlib. Dergelijke voorgedefinieerde circuits zijn het equivalent van functies in imperatieve
programmeertalen.

Het genereren van een bewijs in test 3 duurt ongeveer 1 seconde, het verifiéren van het bewijs slechts een
tiental milliseconden. De grootte van het bewijs was minder dan 400 bytes. In meer complexe settings,
zoals_leeftijdsverificatie op basis van de huidige elD kaart, wat recent door de VUB gerealiseerd werd,
hebben zk-SNARKs 22 seconden nodig om een bewijs te genereren en 0,2 seconden om het te verifiéren.
Verifiéren is in het algemeen sneller dan bewijzen, maar de tijd nodig voor elk van deze operaties verschilt
sterk naargelang het circuit.

Gebruiksvoorwaarden & Budget

Circom is open source onder de GPL-3.0 licentie.

Circom 212 03/12/2025
]

https://alinush.github.io/groth16
https://github.com/iden3/circomlib
https://eprint.iacr.org/2025/1266

